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Multiconfigurationality index calculated for the coupled-cluster wave function based on an
algorithm developed using a computer-aided generation approach is applied to analyze the
multireference state-specific coupled-cluster method with the CAS reference (i.e. the so
called the CAS(n,m)CCSD approach). The numerical results concern dissociation of the BH
molecule where at larger displacement from the equilibrium significant quasi-degeneracy
arises. The analysis shows that the CAS(n,m)CCSD approach performs very well in such a sit-
uation.
Keywords: Multireference coupled-cluster method; CAS reference; CAS(n,m)CCSD; Acidity;
Wave function; Ab initio calculations; Quantum chemistry.

Despite considerable efforts over the past several decades, quantitative
treatment of electron correlation for states of arbitrary configurational com-
plexity remains one of the most challenging problems in quantum chemis-
try. Apart from our work in this field concerning the development of the
state-selective multireference coupled-cluster (SS-MRCC) approach1–13,
there have been other MR-based state-specific many-body formalisms pro-
viding access to just a single root. Among them one should mention the
theories of Malrieu and co-workers14, Mukherjee and co-workers15–18 and
Hubac and co-workers19. All of them exploited the wave operator inducing
separate cluster expansions about each reference functions in the manner
of Jeziorski and Monkhorst20. The approach in ref.14 uses low-order
quasi-linearized truncation schemes, and those in refs15,16,19 suggest
full-blown MRCC formulations which allow systematic improvements. The
SS-MRCC theory that ought to be developed needs to be size-extensive,
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size-consistent, bypasses intruders naturally, and needs to use completely
relaxed model space coefficients. The method in ref.19 uses equations which
are structurally simpler than in other methods, but they are not size-
extensive. Suggestions have been made to alleviate this via a Rayleigh
Schrödinger expansion21, but care then has to be exercised to bypass in-
truders. An analysis demonstrating how a continuous transition from the
state-universal theory of Jeziorski and Monkhorst20 to the state-specific theo-
ries of Hubac and co-workers19 and of Mukherjee and co-workers15,16 can be
accomplished has recently been presented by Pittner22. In all the above
methods the state energy is obtained via diagonalization of an effective op-
erator in the model space, which implies that the method uses relaxed coef-
ficients for the functions of the model space.

The development of the MRCC methodology has been paralleled by the
development of CC approaches that are capable of describing electronic ex-
cited states without relying on the generalized Bloch equation, on which
the “genuine” MRCC methods are based. Examples of the most successful
CC approaches to excited states that are not based on the genuine MRCC
formalism are the linear-response CC method23–33, and the closely related
(often equivalent) equation-of-motion (EOM) CC method34–40, and the
symmetry-adapted cluster configuration interaction (CAS-CI) method41–43.
There have also been some other important developments in this field com-
ing from other groups. Paldus and coworkers have advanced their direct it-
erative solution of the generalized Bloch equation45,46. The method ex-
ploited the concepts of a multidimensional reference or model space, a
(non-Hermitian) effective Hamiltonian, and the generalized Bloch equa-
tion. They have also advanced their reduced multireference coupled-cluster
method which represents the MR-CISD-based version of the so-called exter-
nally corrected CCSD developed in the framework of the unitary group
based coupled-cluster theory (UGA CCSD)47–49. The Bloch equation ap-
proach has been a subject of recent investigations in Piecuch’s group50,51.
They also applied our SSMRCC approach in the context of the EOMCCSD
method to excited state calculations and demonstrated an improved trend
in vertical excitation energies when selected triple and quadruple excita-
tions are included in the calculation as described in our scheme52. Our
scheme has also been followed by Bartlett and his group. The method that
they term CCSDt and CCSDtq 53 is essentially identical to our earlier-
developed SSMRCCSD(T) and SSMRCCSD(TQ) approaches.

Most of the recent activities in the excited state CC studies have been
centered around the EOMCC approach37,54–56. In particular, the most recent
works of Bartlett, Kucharski and coworkers should be noted57. Although not
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strictly size-extensive, this methodology has been gaining popularity as a
practical and accurate multistate method for calculating electronic excita-
tion energies. It has been used to calculate excitation spectra of both
smaller and larger molecular systems58,59. Recently an interesting develop-
ment concerning a renormalized CC approach and its application to elec-
tronic excited states has come from the Piecuch’s group60. Among the
multistate methods one should also mention interesting works coming
from Head-Gordon, Krylov, and Sherrill laboratories44,61–63, and the
spin-restricted CC theory based on a linear-response approach of Szalay and
Gauss64 and Szalay et al.65

In this context we should also mention the works carried on by our
group66 and by others on the computerized development of algorithms for
amplitude equations in various advanced forms of the SR and MR CC wave
functions. Very recently, special determinant-based CI versions of such al-
gorithms have been developed in three different groups67–69 permitting one
to generate CC solutions for arbitrary levels of excitation. In related devel-
opments, Olsen coded a string-based algorithm which takes advantage of
Bruckner orbitals70 and Nooijen and Lotrich implemented a general
procedure to generate formulas and program codes of many-body and CC
methods71,72. Also recently, Kállay and Surján68 demonstrated how the CC
equations can be effectively solved up to an arbitrary excitation level by the
combination of diagrammatics and the string-based formalism. In this ap-
proach, a general algorithm for generation and factorization of the CC dia-
grams that minimizes the operation count and the storage requirement of
the CC calculation by optimal definition of intermediates was presented.
The procedure scaled as n nn n

o v
+ 2 where n is the highest excitation in the clus-

ter operator, no and nv are the numbers of occupied and virtual orbitals, re-
spectively, which is the same scaling as for the conventional CC procedure.

In brief, the following have been the major contributions of our group
dealing with development and implementation the state-specific multi-
reference coupled-cluster approach. The SSMRCCSD(T) and SSMRCCSD(TQ)
levels of the state-selective, multireference coupled-cluster theory based on
the doubly-exponential form of the wave function has been developed, im-
plemented, and applied. In this approach, the reference wave function is
represented by the exponentiated CC excitation operator $ (int)T defined us-
ing the orbitals from the active space and acting on a formal reference de-
terminant (Fermi vacuum). The excitations to the non-active orbital space,
as well as mixed excitations (or as they are also called semi-internal excita-
tions) are represented by the operator $ ( )T ext :
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| | | .
$ (int) $ $

Ψ ΦSSMRCC e e e
(ext) (ext) (int)

〉 = 〉 = 〉T T T 0 (1)

More recently our works have concerned an approach where the internal
part of the SSMRCC wave function is represented in the CI-like form as a
linear combination of the model reference-space determinants:

| | $ )| .
$ (int) $ (int)Ψ ΦSSMRCC e e (1 + C

(ext) (ext)

〉 = 〉 = 〉T T 0 (2)

That approach will be discussed in more detail later in this work.
In conclusion, it is apparent that the development of the MRCC theory

has attracted significant attention of the best theoretical groups and that a
number of fundamental problems still remain unsolved in this area. Fur-
thermore, it is clear that the current level of the theoretical development
does not yet offer a simple, robust and flexible MRCC procedure which can
be applied to chemically interesting systems in a routine “black box” fash-
ion.

MULTICONFIGURATIONALITY INDEX APPLIED TO COUPLED-CLUSTER
ELECTRON CORRELATION PROBLEM

In the single-reference CC method the wave function (|ΨCC〉) is represented
by the following general expression (|ΨCC〉 , the standard expansion is as-
sumed):

| exp( $) | ( $ $ ...) |ΨCC 〉 = 〉 = + + + 〉T T T0 1 01
2

2 (3)

where the |0〉 is the reference determinant. The cluster operator $T can be ex-
pressed as a sum of one-, two-, three-electron, etc., excitation operators:

$ $ $ $ ...T T T T= + + +1 2 3 (4)

which generate a superposition of the corresponding electron-excited con-
figurations from the reference determinant |0〉:
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Here, the notation |i
a

1

1 〉, |i i
a a

1 2

1 2 〉, |i i i
a a a

1 2 3

1 2 3 〉 and |i i i i
a a a a

1 2 3 4

1 2 3 4 〉 denotes singly-, doubly-, tri-
ply, etc., excited determinants. The coefficients t i

a

1

1 , t i i
a a

1 2

1 2 , t i i i
a a a

1 2 3

1 2 3 and t i i i i
a a a a

1 2 3 4

1 2 3 4

are the cluster amplitudes. The spin-orbital indices i1, i2, i3, etc., designate
occupied orbitals in the reference determinant (|0〉) while the spin-orbital
indices a1, a2, a3, etc., denote vacant spin-orbitals in |0〉 .

A distinctive feature of the CC theory is the fact that in contributions to
the total wave function from high-order excitations consist in part of prod-
ucts of contributions from lower-order excitations. To determine the contri-
bution from the excited determinant 〈 …

…
i i i
a a a

1 2 3

1 2 3 | to the CC wave function one
needs to calculate the scalar product of that determinant and the CC wave
function. In particular, the contribution from the one-particle excited con-
figuration, |i

a

1

1 〉, which corresponds to promotion of an electron from
i1-spin-orbital to the spin-orbital a1 is determined as:

C Ti
a

i
a

i
a

1

1

1

1

1

1
1 0= 〈 〉 = 〈 〉| | $ | .ΨCC (9)

Analogously, the contributions from the two-, three- and four-electron ex-
cited configurations are calculated as:

C T Ti i
a a

i i
a a

i i
a a

1 2

1 2

1 2

1 2

1 2

1 2
2

1
2 1

2 0= 〈 〉 = 〈 + 〉| | $ $ |ΨCC (10)
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C T T T Ti i i
a a a

i i i
a a a

1 2 3

1 2 3

1 2 3

1 2 3
3 1 2

1
3 1

3 0= 〈 + + 〉| $ $ $ $ |! (11)

C T T Ti i i i
a a a a

i i i i
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1 2 3 4

1 2 3 4

1 2 3 4
4 1 3

1
2= 〈 + +| $ $ $ $T T T T2

2 1
2 1

2
2

1
4 1

4 0+ + 〉$ $ $ | .! (12)

Thus, in general, the contribution to the wave function (3) from an arbi-
trary electron-excited configuration can be determined by the following
product:

C T T Ti i i
a a a

i i i
a a a

1 2 3

1 2 3

1 2 3

1 2 3
1 2 3…

…
…
…= 〈 + +|exp( $ $ $ ...) |0〉 . (13)

The approach described by Eq. (13) provides a procedure to represent a
general CC wave function with an arbitrary level of the electron excitation
as a CI-like wave function:

| | | |
,

ΨCC 〉 = 〉 + 〉 +∑
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1

|

> > >

∑ 〉 + …
i i i2 3 4

(14)

This representation can be used to analyze the importance of contributions
corresponding to particular excitation levels to the electronic state of inter-
est. Interpretation of the CC wave function using Eqs (9)–(12) or Eq. (13)
also provides a useful tool to compare the CC wave function with the wave
functions generated with other methods, for example, FCI (the full configu-
ration interaction method) or MRCI (the multireference configuration in-
teraction method). Such a comparison can be made using squares of indi-
vidual CI coefficients or, what is more convenient, sums of squares of the
CI coefficients corresponding to particular excitation levels. Such a cumula-
tive quantity provides information on the total weight of all configurations
corresponding to the certain k-fold excitation level to the CC wave func-
tion. Since, as it is customary, the intermediate normalization is used in the
CC wave function the contribution from the reference determinant |0〉 is
equal to one:
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W0 0 1= 〈 〉 =| .ΨCC (15)

The total contribution from all excited determinants of the k-order (k = 1,
2, 3, 4, etc.) to the CC wave function can be calculated as:
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etc.

The total sum of all weights Wk is the normalization factor:

N Wk
k

i i i
a a a

a a a
i i

k

k

k

0
2

1 2

1 2

1 2
1 2

= = 〈 〉∑ …
…

< <… <
< <… <

| | | .ΨCC

i
k

k

∑∑ (20)

This quantity can be used as a multiconfigurationality index since its devia-
tion from unity indicates how significantly the total CC wave function dif-
fers from the reference determinant (i.e., large contributions from determi-
nants other than |0〉).

STATE-SPECIFIC MULTIREFERENCE COUPLED-CLUSTER THEORY

In the present work we have used the above described multiconfigur-
ationality indices for the analysis of the wave function obtained using the
state-specific multireference (MR) CC method (SSMRCC) which has been
developed in our laboratory.
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In our SSMRCC method, the formal reference determinant, |0〉, defines
the partition of the spin-orbital space into the occupied spin-orbitals or
holes, which are occupied in |0〉, and the unoccupied spin-orbitals or parti-
cles, which are unoccupied in |0〉. The formal reference determinant is usu-
ally taken as the most important determinant in the wave function of the
calculated state.

Among the holes, we distinguish active and inactive holes, and among
the particles we distinguish active and inactive particles. All possible elec-
tron excitations from the active occupied to the active unoccupied
spin-orbitals in |0〉 generate the model-space of determinants (the approxi-
mate wave function expanded in terms of model-space determinants will be
denoted as | (int)Φµ 〉). In the spin-orbital notation in this work we use the fol-
lowing convention: the inactive occupied spin-orbitals are denoted with
letters ii, i2, i3, …; the active occupied spin-orbitals with letters: I1, I2, I3, …;
the active unoccupied spin-orbitals with letters: A1, A2, A3, …; and the inac-
tive unoccupied spin-orbitals with letters: a1, a2, a3, …. The italic-style
lower-case letters i1, i2, i3, … and a1, a2, a3, … denote both active and inac-
tive occupied spin-orbitals and both active and inactive unoccupied
spin-orbitals, respectively.

Several variants of the SSMRCC approach that, as shown, provide very
accurate descriptions of states with significant configuration quasi-
degeneracy have been developed in our laboratory. Among them is a
method termed CAS(n,m)CCSD which is based on the following ansatz for
the CC wave function:

| exp( $ )( $ )|( ) (int)ΨCAS( , )CCSD
ext

n m T C〉 = + 〉1 0 (21)

or more explicitly:

| exp( $ $ )( $ $ )|ΨCAS( , )CCSDn m n nT T C C〉 = + ⋅ ⋅ ⋅ + + + ⋅ ⋅ ⋅ ++1 2 11 0〉 (22)

where “n” denotes the number of active electrons and “m” denotes the
number of active orbitals. In (22) the model-space reference wave function
is generated by a CI-like operator ( $ )|(int)1 0+ 〉C which represents the so-called
internal part of the wave function. In order for the ansatz (22) to provide
size-extensive results, the internal part needs to include all possible config-
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urations constructed by using the active orbitals (holes and particles). The
additional exponentiated cluster operator $ ( )T ext in (22) generates semi-
internal and external excitations from the model-space determinants. Both
$ (int)C and $ ( )T ext are defined in terms of creation and annihilation of spin-
orbital operators corresponding to holes and particles of the formal refer-
ence determinant, |0〉.

In the first implementation of the CAS(n,m)CCSD method13 based on
Eq. (22) we used the complete-active-space (CAS) reference wave function
and we included all single and double excitations from the model-space de-
terminants in the external part, exp ( $ ( )T ext ). Those single and double excita-
tions are represented in the T(ext) operator in the form of excitations from
the formal reference determinant |0〉. Thus they include all single and dou-
ble, semi-internal and external excitations from |0〉, as well as some selected
high-order excitations from |0〉 (i.e. higher than double) that need to be in-
cluded because they are single and double excitations from other
model-space determinants.

For example, including in T(ext) all single and double excitations from all
CAS(2,2) reference determinants leads to the approach termed
CAS(2,2)CCSD where the CASCC wave function has the following form:

| exp( $ $ $ ( ) $ (ΨCAS(2,2)CCSD 〉 = + + +T T T TI i i
A a a

1 2 3 41 1 2

1 1 2
I I i i
A A a a C C

1 2 1 2

1 2 1 2 1 01 2))( $ $ )| .+ + 〉 (23)

This level of theory should be sufficient to describe the dissociation of a
single chemical bond. In the above expression for the CAS(2,2)CCSD wave
function the cluster operator $ ( )T I i i

A a a
3 1 1 2

1 1 2 generates all two-electron excitations
from the singly excited reference determinant |I

A

1

1 〉 while all one-electron ex-
citations from that reference are generated by a subset of the $T2 operator
(among the indices ( I i i

A a a

1 1 2

1 1 2
… …
… … ) at least one must correspond to an inactive

label). The $ ( )T I I i i
A A a a

4 1 2 1 2

1 2 1 2 operator generates two-electron excitations from the
| I I

A A

1 2

1 2 〉 reference determinant while the one-electron excitations from that
determinant are generated by a subset of the $ ( )T I i i

A a a
3 1 1 2

1 1 2 operator.
A calculation describing the dissociation process of a double bond (or si-

multaneous dissociation of two single bonds) has to involve four orbitals
and four electrons in the active CAS space (CAS(4,4)). Hence the configura-
tion model space in this case needs to include five types of configurations
distinct by their levels of excitations from the formal reference determinant
|0〉 :
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|0〉, |I
A

1

1 〉, | I I
A A

1 2

1 2 〉 , |I I I
A A A

1 2 3

1 2 3 〉 , | I I I I
A A A A

1 2 3 4

1 2 3 4 〉 .

Including all two-electron excitations from the model space determinant
| I I I I

A A A A

1 2 3 4

1 2 3 4 〉 requires including cluster operators in T(ext) involving as many as
six-electron excitations from |0〉. Thus, the complete CAS(4,4)CCSD wave
function has the following form:

| exp( $ $ $ ( ) $ (ΨCAS(4,4)CCSD 〉 = + + +T T T TI i i
A a a

1 2 3 41 1 2

1 1 2
I I i i
A A a a

I I I i i
A A A a a

IT T

1 2 1 2

1 2 1 2

1 2 3 1 2

1 2 3 1 2
5 6

)

$ ( ) $ (

+

+ +
1 2 3 4 1 2

1 2 3 4 1 2 1 01 2 3 4I I I i i
A A A A a a C C C C))( $ $ $ $ )| .+ + + + 〉

(24)

In the recent work13 we discussed the numerical implementations of the
CAS(2,2)CCSD and CAS(4,4)CCSD methods and we provided examples
showing that the methods perform very well in situation where strong con-
figurational quasidegeneracy arises due to stretching of covalent chemical
bonds.

NUMERICAL RESULTS

In this section we will discuss an example of the application of the CASCC
method to describe a strongly multiconfigurational character of the CC
wave function of a model system. That model in the present calculations is
boron hydride described using the standard DZV basis set. The Hartree–
Fock calculation of B–H at the equilibrium geometry leads to the following
orbital ordering:

1 2 3 1 1 4 2 2 5 6 72 2 2 0 0
0

0 0 0 0 0σ σ σ π π σ π π σ σ σx y x y (25)

where the superscripts indicate the occupation numbers of the orbitals in
the lowest-energy (Hartree–Fock) determinant. This order does not change
during the B–H dissociation.

In the first step of the analysis of the B–H dissociation we have calculated
the total weights of different configurations which provide most dominant
contributions to the wave function along the dissociation path. In the
calculations we used the CCSD level of theory and the results are shown in
Table I. As one can see by examining the results, the most important con-
figurations are the two-electron excitations (W2 ≈ 0.082 at the equilibrium
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internuclear distance). There are also noticeable contributions from three-
and four-electron excitations (of the order of ≈10–3). Stretching the B–H
bond leads to increasing of the weights at all excitation levels. The normal-
ization factor (N0) clearly indicates the growth of the multiconfigur-
ationality character of the wave function during the bond breaking. The
conclusion that can be drawn from the results shown in Table I is that in
order to increase the accuracy of the calculation one needs to more exactly
account for the three- and four-electron excitations than is done by the
CCSD approach. Such an account can be achieved by using the
CAS(n,m)CCSD approach.

To apply CAS(n,m)CCSD to the B–H molecule one needs to first select the
appropriate active spin-orbital space. For this purpose we have used a sim-
ple energy decomposition scheme which can be applied to the CC ap-
proach. In the scheme, one attributes the following correlation energy con-
tribution (εi) to the occupied orbital (i). The sum of εi gives the total correla-
tion energy (∆E):
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TABLE I
Total weights of k-electron excited configurations (Wk) in the CCSD wave function in com-
parison with FCI for boron hydride at different internuclear distances. N0 is the normaliza-
tion factor of the wave function (the intermediate normalization of the wave function is as-
sumed). The equilibrium B–H distance is Re = 2.34a0

Wk Re 2 Re 3 Re 4 Re

W1 CCSD 0.9912 × 10–3 0.2406 × 10–1 0.1608 0.2050

FCI 0.1192 × 10–2 0.2264 × 10–1 0.1555 0.1997

W2 CCSD 0.8245 × 10–1 0.2313 0.6988 0.9749

FCI 0.8435 × 10–1 0.2409 0.7304 1.0091

W3 CCSD 0.2208 × 10–3 0.1395 × 10–2 0.9513 × 10–2 0.1248 × 10–1

FCI 0.5726 × 10–3 0.2794 × 10–2 0.1395 × 10–1 0.1818 × 10–1

W4 CCSD 0.8571 × 10–3 0.9176 × 10–2 0.3608 × 10–1 0.5153 × 10–1

FCI 0.9222 × 10–3 0.9523 × 10–2 0.3735 × 10–1 0.5350 × 10–1

W5 CCSD 0.1636 × 10–7 0.1380 × 10–7 0.1185 × 10–6 0.1891 × 10–6

FCI 0.7054 × 10–7 0.5488 × 10–6 0.1925 × 10–5 0.2530 × 10–5

W6 CCSD 0.6907 × 10–8 0.5910 × 10–7 0.2385 × 10–6 0.3454 × 10–6

FCI 0.1041 × 10–7 0.8787 × 10–6 0.3429 × 10–5 0.4889 × 10–6

N0 CCSD 1.0845 1.2660 1.9052 2.2439

FCI 1.0870 1.2758 1.9372 2.2805
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A similar decomposition can be done for vacant orbitals:
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= ∑ ε (28)

where
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|| ( ) . (29)
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TABLE II
Orbital contributions to the CCSD correlation energy at different internuclear separations of
the BH molecule. ∆E, total correlation energy. All signs are reversed. The values in the pa-
rentheses are the percentages of the total correlation energy

Energy Re 2Re 3Re 4Re

∆E 0.05996 0.10474 0.16952 0.21281

Occupied orbitals

1σ 0.00039 (0.7) 0.00039 (0.4) 0.00038 (0.2) 0.00037 (0.2)

2σ 0.02705 (45.1) 0.04226 (40.3) 0.04284 (25.3) 0.04148 (19.5)

3σ 0.03251 (54.2) 0.06210 (59.3) 0.12630 (74.5) 0.17096 (80.3)

Vacant orbitals

1πx 0.01098 (18.3) 0.01285 (12.3) 0.01338 (7.9) 0.01323 (6.2)

1πy 0.01098 (18.3) 0.01285 (12.3) 0.01338 (7.9) 0.01323 (6.2)

4σ 0.00228 (3.8) 0.05603 (53.5) 0.12174 (71.8) 0.16461 (77.4)

2πx 0.00473 (7.9) 0.00448 (4.3) 0.00395 (2.3) 0.00395 (1.9)

2πy 0.00473 (7.9) 0.00448 (4.3) 0.00395 (2.3) 0.00395 (1.9)

5σ 0.01234 (20.6) 0.00473 (4.5) 0.00326 (1.9) 0.00399 (1.9)

6σ 0.00644 (10.7) 0.00464 (4.4) 0.00527 (3.1) 0.00491 (2.3)

7σ 0.00749 (12.5) 0.00468 (4.5) 0.00458 (2.7) 0.00495 (2.3)



In Table II we present orbital contributions to the correlation energy de-
termined at the CCSD level of theory. As one notices, as the B–H bond stretches
(to 2Re, 3Re and 4Re), the most dominant contributions are due to the occu-
pied 3σ orbital and the vacant 4σ orbital (underlined in the table). Contri-
butions from those orbitals provide 80.3 and 77.4% of the total correlation
energy, respectively, at the internuclear distance R = 4Re. Thus it is clear
that the 3σ and 4σ orbitals have to be included in the active space. All pos-
sible distributions of the two active electrons among the active orbitals gen-
erate the reference space. The determinant which gives the dominant con-
tribution to the CASSCF wave function is selected as the “formal reference”.
In this way the form of the CAS(2,2)CCSD wave function is defined.

The application of the CAS(2,2)CCSD approach to B–H has resulted in the
energies for different points along the potential energy curve which are
shown in Table III. In the table, a comparison is made between the
CAS(2,2)CCSD results with the results obtained by CASSCF, CCSD,
CR-CCSD(T) (the so-called completely renormalized (CR) CCSD(T) method84

recently implemented in the GAMESS package), and FCI levels of theory. It
is clear that the CAS(2,2)CCSD method is the most accurate in accounting
for the electron correlation effects. The agreement of the CAS(2,2)CCSD en-
ergies with the FCI energies is the most constant among the four methods
at all points on the B–H dissociation path.

The structure of the CAS(2,2)CCSD wave function, as analyzed in Table IV,
also illustrates the high accuracy of the method. The agreement between
the configurational coefficients obtained in the CAS(2,2)CCSD calculations
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TABLE III
A comparison of the CASSCF(2,2), CCSD, CR-CCSD(T) and CAS(2,2)CCSD ground-state ener-
gies with the FCI results for different internuclear separations of the BH molecule. The stan-
dard valence double-zeta (DZV) basis set was used in the calculation. The FCI energies are
given in hartrees and for the other methods in millihartrees relative to the corresponding
FCI values

Geometry CASSCF(2,2) CCSD CR-CCSD(T) CAS(2,2)CCSD FCI

Re 45.30 0.81 0.35 0.46 –25.174185

2Re 45.54 2.07 0.72 0.29 –25.094143

3Re 42.98 3.90 0.85 0.38 –25.068909

4Re 42.61 4.04 0.74 0.40 –25.067285



and the FCI coefficients is very good. This shows that the CAS(2,2)CCSD
wave function represents very well the physical nature of the B–H dissocia-
tion process.

CONCLUSIONS

We have shown that the dissociation of the BH molecule can be very accu-
rately described using the CAS(2,2)CCSD method. In this approach, one
first selects an orbital active space. As it was shown, this can be done by cal-
culating correlation contributions corresponding to individual occupied
and vacant molecular orbitals based on the CCSD wave function. The de-
gree of the multiconfigurationality of the wave function of the considered
problem can be examined by calculating cumulative weight factors that de-
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TABLE IV
CASSCF(2,2), CAS(2,2)CCSD and FCI configuration coefficients of the dominant configura-
tions of BH at the internuclear separation of 4Re. Intermediate normalization is assumed in
the wave function. All configurations with the coefficients larger than 0.1 (or smaller that
–0.1) are shown

Determinant CASSCF(2,2) CAS(2,2)CCSD FCI

Reference

|0〉 1 1 1

|1〉 = |03 3
4 4

σ σ
σ σ〉

–0.9641 –0.9581 –0.9578

|2〉 = |03
4

σ
σ〉

0.1267 0.1234 0.1231

External and semi–internal excitations from references

|0 2 2σ σ
π πx x 〉 – –0.1233 –0.1246

|0 2 2σ σ
π πy y 〉 – –0.1233 –0.1246

|12 2σ σ
π πx x 〉 – 0.1184 0.1196

|12 2σ σ
π πy y 〉 – 0.1184 0.1196



scribe the importance of configurations at specific excitation levels to the
wave function. The analysis can be done at the CCSD level of theory. For
the BH molecule at larger internuclear distances the weight factor corre-
sponding to double excitations clearly showed a much increased
multiconfigurationality level. Such increased level cannot be correctly han-
dled by the single-reference CCSD approach, but, as shown, can be very
well described using the CAS(2,2)CCSD approach with two orbitals and two
electrons in the active space. Both the energy and the configurational coef-
ficients obtained in the CAS(2,2)CCSD calculations are very close to the re-
spective FCI values at all the points along the dissociation path considered
in the present calculations.
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